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This package represents a community effort to provide common functionality to generate, load, split, and process
Machine Learning datasets in Julia. As such, it is a part of the JuliaML ecosystem. In contrast to other data-centered
packages, MLDataUtils focuses specifically on functionality utilized in a Machine Learning context.

If this is the first time you consider using MLDataUtils, make sure to check out the “Getting Started” section; specifi-
cally “How to ...?”.

Contents 1
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CHAPTER 1

Installation

To install MLDataUtils.jl, start up Julia and type the following code-snipped into the REPL. It makes use of the native
Julia package manger.

Pkg.add("MLDataUtils")

Additionally, for example if you encounter any sudden issues, or in the case you would like to contribute to the
package, you can manually choose to be on the latest (untagged) version.

Pkg.checkout("MLDataUtils")
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CHAPTER 2

Getting Started

MLDataUtils is the result of a collaborative effort to design an efficient but also convenient implementation for many
of the commonly used data-related subsetting and pre-processing patterns.

Aside from providing common functionality, this library also defines a set of common interfaces and functions, that
can (and should) be extended to work with custom user-defined data structures.

2.1 Hello World

This package is registered in the Julia package ecosystem. Once installed the package can be imported just as any
other Julia package.

using MLDataUtils

Let us take a look at a hello world example (with little explanation) to get a feeling for how to use this package in a
typical ML scenario. It is a common requirement in machine learning related experiments to partition the dataset of
interest in one way or the other.

# X is a matrix of floats
# Y is a vector of strings
X, Y = load_iris()

# The iris dataset is ordered according to their labels,
# which means that we should shuffle the dataset before
# partitioning it into training and testset.
Xs, Ys = shuffleobs((X, Y))
# Notice how we use tuples to group data.

# We leave out 15 % of the data for testing
(cv_X, cv_Y), (test_X, test_Y) = splitobs((Xs, Ys); at = 0.85)

# Next we partition the data using a 10-fold scheme.
# Notice how we do not need to splat train into X and Y
for (train, (val_X, val_Y)) in kfolds((cv_X, cv_Y); k = 10)

# Iterate over the data using mini-batches of 5 observations each
for (batch_X, batch_Y) in eachbatch(train, size = 5)

# ... train supervised model on minibatches here
end

end
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In the above code snipped, the inner loop for eachbatch() is the only place where data other than indices is actually
being copied. That is because cv_X, test_X, val_X, etc. are all array views of type SubArray (the same applies
to all the y’s of course). In contrast to this, batch_X and batch_y will be of type Array. Naturally array views
only work for arrays, but we provide a generalization of such for any type of datastorage.

Furthermore both, batch_X and batch_y, will be the same instance each iteration with only their values changed.
In other words, they both are a preallocated buffers that will be reused each iteration and filled with the data for the
current batch.

Naturally one is not required to work with buffers like this, as stateful iterators can have undesired sideeffects when
used without care. For example collect(eachbatch(X)) would result in an array that has the exact same batch
in each position. Oftentimes though, reusing buffers is preferable. This package provides different alternatives for
different use-cases.

2.2 How to ... ?

Chances are you ended up here with a very specific use-case in mind. This section outlines a number of different but
common scenarios and explains how this package can be utilized to solve them.

• TODO: Split Train test (Val)

• TODO: KFold Cross-validation

• TODO: Labeled Data with inbalanced classes

• TODO: DataFrame

• TODO: GPU Arrays

• TODO: Custom Data Storage Type (ISIC)

• TODO: Custom Data Iterator (stream)

2.3 Getting Help

To get help on specific functionality you can either look up the information here, or if you prefer you can make use of
Julia’s native doc-system. The following example shows how to get additional information on DataSubset within
Julia’s REPL:

?DataSubset

If you find yourself stuck or have other questions concerning the package you can find us at gitter or the Machine
Learning domain on discourse.julialang.org

• Julia ML on Gitter

• Machine Learning on Julialang

If you encounter a bug or would like to participate in the further development of this package come find us on Github.

• JuliaML/MLDataUtils.jl

While the sole focus of the whole package is on data-related functionality, we can further divide the provided types
and functions into a number of quite different sub-categories.
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CHAPTER 3

Data Access Pattern

The core of the package, and indeed the part that thus far received the most attention, are the data access pattern. These
include data-partitioning, -subsampling, and -iteration. The main design principle behind the access pattern is based
on the assumption that the data a user is working with is likely of some very user-specific custom type. That said, there
was also a lot of attention put into first class support for those types that are most commonly employed to represent
the data of interest, such as Array.

3.1 Data Subsetting

It is a common requirement in machine learning related experiments to partition the dataset of interest in one way or
the other. This section outlines the functionality that this package provides for the typical use-cases.

3.1.1 Design Decisions

One of the interesting strong points of the Julia language is its rich and developer friendly type system. As such we
made it a key priority to make as little assumptions as possible about the data at hand.

3.1.2 The DataSubset Type

This package represents subsets of data as a custom type called DataSubset; unless a custom subset type is pro-
vided, but more on that later. The main purpose for the existence of DataSubset is two-fold:

1. To delay the evaluation of a subsetting operation until an actual batch of data is needed.

2. To accumulate subsettings when different data access pattern are used in combination with each other (which
they usually are). (i.e.: train/test splitting -> K-fold CV -> Minibatch-stream)

This design aspect is particularly useful if the data is not located in memory, but on the harddrive or some remote
location. In such a scenario one wants to load only the required data only when it is actually needed.

3.1.3 Splitting into Train and Test

Some separation strategies, such as dividing the dataset into a training- and a testset, is often performed offline or
predefined by a third party. That said, it is useful to efficiently and conveniently be able to split a given dataset into
differently sized subsets.

One such function that this package provides is called splitobs(). Note that this function does not shuffle the
content, but instead performs a static split at the relative position specified in at.

7
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TODO: example splitobs

For the use-cases in which one wants to instead do a completely random partitioning to create a training- and a
testset, this package provides a function called shuffleobs. Returns a lazy “subset” of data (using all observations),
with only the order of the indices permuted. Aside from the indices themseves, this is non-copy operation. Using
shuffleobs() in combination with splitobs() thus results in a random assignment of data-points to the data-
partitions.

TODO: example shuffleobs

3.1.4 K-Folds for Cross-validation

Yet another use-case for data partitioning is model selection; that is to determine what hyper-parameter values to
use for a given problem. A particularly popular method for that is k-fold cross-validation, in which the dataset gets
partitioned into 𝑘 folds. Each model is fit 𝑘 times, while each time a different fold is left out during training, and is
instead used as a validation set. The performance of the 𝑘 instances of the model is then averaged over all folds and
reported as the performance for the particular set of hyper-parameters.

This package offers a general abstraction to perform 𝑘-fold partitioning on data sets of arbitrary type. In other words,
the purpose of the type KFolds is to provide an abstraction to randomly partition some dataset into 𝑘 disjoint folds.
KFolds is best utilized as an iterator. If used as such, the dataset will be split into different training and test portions
in 𝑘 different and unqiue ways, each time using a different fold as the validation/testset.

The following code snippets showcase how the function kfolds() could be utilized:

TODO: example KFolds

Note: The sizes of the folds may differ by up to 1 observation depending on if the total number of observations is
dividable by 𝑘.

3.1.5 Observation Dimension

3.2 Data Iterators

Other partition-needs arise from the fact that the interesting datasets are increasing in size as the scientific community
continues to improve the state-of-the-art. However, bigger datasets also offer additional challenges in terms of com-
puting resources. Luckily, there are popular techniques in place to deal with such constraints in a surprisingly effective
manner. For example, there are a lot of empirical results that demonstrate the efficiency of optimization techniques
that continuously update on small subsets of the data. As such, it has become a de facto standard to iterate over a given
dataset in minibatches, or even just one observation at a time.

In the case that the size of the dataset is not dividable by the specified (or inferred) size, the remaining observations
will be ignored.

The functions obsview() or batchview() will not shuffle the data, thus the observations within each
batch/partition will in general be adjacent to each other. However, one can choose to process the batches in random
order by using shuffleobs()

3.2.1 RandomBatches

The purpose of RandomBatches is to provide a generic DataIterator specification for labeled and unlabeled
randomly sampled mini-batches that can be used as an iterator. In contrast to BatchView, RandomBatches

8 Chapter 3. Data Access Pattern
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generates completely random mini-batches, in which the containing observations are generally not adjacent to each
other in the original dataset.

The fact that the observations within each mini-batch are uniformly sampled has an important consequences. Because
observations are independently sampled, it is likely that some observation(s) occur multiple times within the same
mini-batch. This may or may not be an issue, depending on the use-case. In the presence of online data-augmentation
strategies, this fact should usually not have any noticible impact.

The following code snippets showcase how RandomBatches could be utilized:

3.3 Support for User Types

TODO: Only LearnBase dependency needed.

TODO: different level of information available (nobs vs only first etc)

3.3.1 Custom Data Container

For DataSubset (and all the data splitting functions for that matter) to work on some custom data-container-type,
the desired type MyType must implement the following interface:

LearnBase.getobs(data, idx[, obsdim])
Parameters

• data (MyType) – The data of your custom user type. It should represent your dataset of
interest and somehow know how to access observations of a specific index.

• idx – The index or indices of the observation(s) in data that the subset should represent.
Can be of type Int or some subtype AbstractVector{Int}.

• obsdim (ObsDimension) – Support optional. If it makes sense for the type of data,
obsdim can be used to specify which dimension of data denotes the observations. It can be
specified in a typestable manner as a positional argument.

If support is provided, obsdim can take on any of the following values. Their meaning is
completely up to the user.

ObsDim.First() ObsDim.Last() ObsDim.Constant(N)

Returns Should return the observation(s) indexed by idx. In what form is completely up to the user
and can be specific to whatever task you have in mind! In other words there is no contract that
the type of the return value has to fullfill.

LearnBase.nobs(data[, obsdim])
Parameters

• data (MyType) – The data of your custom user type. It should represent your dataset of
interest and somehow know how many observations it contains.

• obsdim (ObsDimension) – Support optional. If it makes sense for the type of data,
obsdim can be used to specify which dimension of data denotes the observations. It can be
specified in a typestable manner as a positional argument.

If support is provided, obsdim can take on any of the following values. Their meaning is
completely up to the user.

ObsDim.First() ObsDim.Last() ObsDim.Constant(N)

3.3. Support for User Types 9
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Returns Should return the number of observations in data

The following methods can also be provided and are optional:

LearnBase.getobs(data)
By default this function will be the identity function for any type of data that does not prove a custom method
for it. If that is not the behaviour that you want for your type, you need to provide this method yourself.

Parameters data (MyType) – The data of your custom user type. It should represent your dataset
of interest and somehow know how to return the full dataset.

Returns Should return all observations in data. In what form is completely up to the user and can
be specific to whatever task you have in mind! In other words there is no contract that the type
of the return value has to fullfill.

LearnBase.getobs!(buffer, data[, idx ][, obsdim])
Inplace version of getobs(). If this method is provided for the type of data, then eachobs()
and eachbatch() (among others) can preallocate a buffer that is then reused every iteration.

param buffer The preallocated storage to copy the given indices of data into. Note: The
type and structure should be equivalent to the return value of getobs(), since this is
how buffer is preallocated by default.

Parameters

• data (MyType) – The data of your custom user type. It should represent your dataset of
interest and somehow know how to access observations of a specific index, and how to store
those observation(s) into buffer.

• idx – The index or indices of the observation(s) in data that the subset should represent.
Can be of type Int or some subtype AbstractVector{Int}.

• obsdim (ObsDimension) – Support optional. If it makes sense for the type of data,
obsdim can be used to specify which dimension of data denotes the observations. It can be
specified in a typestable manner as a positional argument.

If support is provided, obsdim can take on any of the following values. Their meaning is
completely up to the user.

ObsDim.First() ObsDim.Last() ObsDim.Constant(N)

DataFrames.jl

3.3.2 Custom Data Subset

LearnBase.datasubset(data, idx[, obsdim])
If your custom type has its own kind of subset type, you can return it here. An example for such a case are
SubArray for representing a subset of some AbstractArray. Note: If your type has no use for obsdim then
dispatch on ::ObsDim.Undefined in the signature.

3.3.3 Custom Data Iterator

10 Chapter 3. Data Access Pattern



CHAPTER 4

Data Processing

This package contains a number of simple pre-processing strategies that are often applied for ML purposes, such as
feature centering and rescaling.

4.1 Feature Normalization

Note: This section will likely be subject to larger changes and/or redesigns. For example none of these function are
of yet adapted to work with ObsDimension

This package contains a simple model called FeatureNormalizer, that can be used to normalize training and test
data with the parameters computed from the training data.

x = collect(-5:.1:5)
X = [x x.^2 x.^3]'

# Derives the model from the given data
cs = fit(FeatureNormalizer, X)

# Normalizes the given data using the derived parameters
X_norm = predict(cs, X)

The underlying functions can also be used directly

4.1.1 Centering

center!(X[, 𝜇])
Centers each row of X around the corresponding entry in the vector 𝜇. In other words performs feature-wise
centering.

Parameters

• X (Array) – Feature matrix that should be centered in-place.

• 𝜇 (Vector) – Vector of means. If not specified then it defaults to mean(X, 2).

Returns

Returns the parameters 𝜇 itself.

11
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𝜇 = center!(X, 𝜇)

4.1.2 Rescaling

rescale!(X[, 𝜇][, 𝜎 ])
Centers each row of X around the corresponding entry in the vector 𝜇 and then rescaled using the corresponding
entry in the vector 𝜎.

Parameters

• X (Array) – Feature matrix that should be centered and rescaled in-place.

• 𝜇 (Vector) – Vector of means. If not specified then it defaults to mean(X, 2).

• 𝜎 (Vector) – Vector of standard deviations. If not specified then it defaults to std(X,
2).

Returns

Returns the parameters 𝜇 and 𝜎 itself.

𝜇, 𝜎 = rescale!(X, 𝜇, 𝜎)

4.1.3 Basis Expansion

expand_poly(x[, degree])
Performs a polynomial basis expansion of the given degree for the vector x.

Parameters

• x (Vector) – Feature vector that should be expanded.

• degree (Int) – The number of polynomes that should be augmented into the resulting
matrix X

Returns

Result of the expansion. A matrix of size (degree, length(x)). Note that all the features of X are
centered and rescaled.

X = expand_poly(x; degree = 5)

12 Chapter 4. Data Processing



CHAPTER 5

Data Generators

When studying learning algorithm or other ML related functionality, it is usually of high interest to empirically test
the behaviour of the system under specific conditions. Generators can provide the means to fabricate artificial data
sets that observe certain attributes, which can help to deepen the understanding of the system under investigation.

5.1 Data Generators

Note: This section may be subject of larger changes and/or redesigns. For example it is planned to absorb josh-
day/DataGenerator.jl

5.1.1 Noisy Function

noisy_function(fun, x; noise, f_rand)→ Tuple
Generates a noisy response y for the given function fun by adding noise .* f_randn(length(x)) to
the result of fun(x).

Parameters

• fun (Function) – The function for which one wants to generate some noisy response
variables. Can be any univariate function accepting a Float64.

• x (Vector) – The feature vector of numbers that should be used as input for fun(x).
This variable will also be returned by the function for consistency with other generators.

• noise (Float64) – The scaling factor for the noise. This number will be multiplied to
the output of f_rand.

• f_rand (Function) – The function creating the random numbers to be added as noise to
the result of fun.

Returns

A tuple of two vectors. The first vector x denotes the independent variable (feature) and the
second vector y represents a noisy estimate of the given function fun, which is “simulated” by
adding some rescaled random numbers to its output.

x, y = noisy_function(fun, x; noise = 0.01, f_rand = randn)

13
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5.1.2 Noisy Sin

noisy_sin(n, start, stop; noise, f_rand)
Generates n noisy equally spaced samples of a sinus from start to stop by adding noise .*
f_randn(length(x)) to the result of fun(x).

Parameters

• n (Int) – Number of observations to generate.

• start (Int) – The lowest value used as input for sin

• stop (Int) – The largest value used as input for sin

• noise (Float64) – The scaling factor for the noise. This number will be multiplied to
the output of f_rand.

• f_rand (Function) – The function creating the random numbers to be added as noise to
the result of sin.

Returns

A tuple of two vectors. The first vector x denotes the independent variable (feature) and the sec-
ond vector y represents a noisy estimate of sin, which is “simulated” by adding some rescaled
random numbers to its output.

x, y = noisy_sin(n, start, stop; noise = 0.3, f_rand = randn)

5.1.3 Noisy Polynome

noisy_poly(coef, x; noise, f_rand)
Generates a noisy response for a polynomial of degree length(coef) using the vector x as input and adding
noise .* f_randn(length(x)) to the result.

Parameters

• coef (Vector) – Contains the coefficients for the terms of the polynome. The first el-
ement denotes the coefficient for the term with the highest degree, while the last element
denotes the intercept.

• x (Vector) – The feature vector of numbers that should be used as the data for the poly-
nome. This variable will also be returned by the function for consistency with other gener-
ators.

• noise (Float64) – The scaling factor for the noise. This number will be multiplied to
the output of f_rand.

• f_rand (Function) – The function creating the random numbers to be added as noise to
the result of the polynome.

Returns

A tuple of two vectors. The first vector x denotes the independent variable (feature) and the
second vector y represents a noisy estimate of the given polynome, which is “simulated” by
adding some rescaled random numbers to its output.

x, y = noisy_poly(coef, x; noise = 0.01, f_rand = randn)
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CHAPTER 6

Example Datasets

We provide a small number of toy datasets. These are mainly intended for didactic and testing purposes.

6.1 Example Datasets

The package contains a few static datasets that are intended to serve as toy examples.

Note: This section may be subject of larger changes. It is possible that in the future the datasets will instead be
provided by JuliaML/MLDatasets.jl instead.

6.1.1 Fisher’s Iris data set

The Iris data set has become one of the most recognizable machine learning example datasets. It was originally pub-
lished by Ronald Fisher [FISHER1936] and contains the 4 different kind of measurements (that we call features) for
150 observations of a plant called Iris. The interesting property of the dataset is that it includes these measurements for
3 different species of Iris (50 observations each) and is thus a dataset that is commonly used to showcase classification
or clustering algorithms.

load_iris([n])→ Tuple
Loads the first n observations from the Iris flower data set introduced by Ronald Fisher (1936).

Parameters n (Int) – default 150. Specifies how many of the total 150 observations should be
returned (in their native order).

Returns

A tuple of three arrays as the following code snipped shows. The 4 by n matrix X contains the
numeric measurements, in which each individual column denotes an observation. The vector
y contains the class labels as strings. The optional vector names contains the names of the
features (i.e. rows of X)

X, y, names = load_iris(n)

Check out the wikipedia entry for more information about the dataset.

15
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6.1.2 Noisy Line Example

This refers to a static pre-defined toy dataset. In order to generate a noisy line using some parameters take a look at
noisy_function().

load_line()→ Tuple
Loads an artificial example dataset for a noisy line. It is particularly useful to explain under- and overfitting.

Returns

The vector x contains 11 equally spaced points between 0 and 1. The vector y contains x ./
2 + 1 plus some gaussian noise. The optional vector names contains descriptive names for x
and y.

x, y, names = load_line()

6.1.3 Noisy Sin Example

This refers to a static pre-defined toy dataset. In order to generate a noisy sin using some parameters take a look at
noisy_sin().

load_sin()→ Tuple
Loads an artificial example dataset for a noisy sin. It is particularly useful to explain under- and overfitting.

Returns

The vector x contains equally spaced points between 0 and 2𝜋. The vector y contains sin(x)
plus some gaussian noise. The optional vector names contains descriptive names for x and y.

x, y, names = load_sin()

6.1.4 Noisy Polynome Example

This refers to a static pre-defined toy dataset. In order to generate a noisy polynome using some parameters take a
look at noisy_poly().

load_poly()→ Tuple
Loads an artificial example dataset for a noisy quadratic function.

Returns

It is particularly useful to explain under- and overfitting. The vector x contains 50 points be-
tween 0 and 4. The vector y contains 2.6 * x^2 + .8 * x plus some gaussian noise. The
optional vector names contains descriptive names for x and y.

x, y, names = load_poly()
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CHAPTER 7

Indices and tables

• genindex

• modindex

• search

7.1 Acknowledgements

7.2 LICENSE

The MLDataUtils.jl package is licensed under the MIT “Expat” License

see LICENSE.md in the Github repository.

17
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