

 Navigation

 	
 index

 	MLDataUtils.jl latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mldatautilsjl/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mldatautilsjl/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	MLDataUtils.jl latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		MLDataUtils.jl latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

LICENSE.html

 Navigation

 		
 index

 		MLDataUtils.jl latest documentation »

 The MLDataUtils.jl package is licensed under the MIT “Expat” License:

Copyright (c) 2016: Christof Stocker.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		MLDataUtils.jl latest documentation »

MLDataUtils

Utility package for generating, loading, and processing Machine
Learning datasets. Aside from providing common functionality,
this library also defines a set of common interfaces and functions,
that can (and should) be extended to work with custom user-defined
data structures.

Package Status	Package Evaluator	Build Status
:——————:	:———————:	:—————–:
[image: Project Status: Active - The project has reached a stable, usable state and is being actively developed.] [http://www.repostatus.org/#active] [image: License]	[image: Package Evaluator v4] [http://pkg.julialang.org/?pkg=MLDataUtils&ver=0.4] [image: Package Evaluator v5] [http://pkg.julialang.org/?pkg=MLDataUtils&ver=0.5]	[image: Build Status] [https://travis-ci.org/JuliaML/MLDataUtils.jl] [image: Coverage Status] [https://coveralls.io/github/JuliaML/MLDataUtils.jl?branch=master]

Installation

This package is registered in METADATA.jl and can be installed as usual

Pkg.add("MLDataUtils")
using MLDataUtils

For the latest developer version:

Pkg.checkout("MLDataUtils")

Table of Contents

		Data Partitioning
		The DataSubset type

		Training-/Testset Splits

		KFolds for Cross-validation

		Data Iteration
		MiniBatches

		RandomSamples

		Feature Normalization
		Centering

		Rescaling

		Basis Expansion

		Data Generators
		Noisy Function

		Noisy Sin

		Noisy Polynome

		Datasets
		The Iris Dataset

		Noisy Line

		Noisy Sin

		Noisy Polynome

Data Partitioning

It is a common requirement in machine learning related experiments
to partition the dataset of interest in one way or the other.
This section outlines the functionality that this package provides
for the typical use-cases.

Here is a quick hello world example (without explanation) to get a
feeling for how functioning code would look like. See the sections
below for more information on the individual methods and types.

X is a matrix of floats
y is a vector of strings
X, y = load_iris()

leave out 25 % of data for testing
(cv_X, cv_y), (test_X, test_y) = splitdata(X, y; at = 0.75)

Partition the data using a 10-fold scheme
for ((train_X, train_y), (val_X, val_y)) in KFolds(cv_X, cv_y, k = 10)

 # Iterate over the data using mini-batches of 5 observations each
 for (batch_X, batch_y) in MiniBatches(train_X, train_y, size = 5)
 # ... train supervised model on minibatches here
 end
end

In the above code snipped, the inner loop for MiniBatches is the
only place where data is actually being copied. That is because
cv_X, test_X, train_X, and val_X are all a subtype of
DataSubset (the same applies to all the y‘s of course).

The DataSubset type

This package represents subsets of data as a custom type called
DataSubset. The main purpose for the existence of this type is
two-fold:

		to delay the evaluation of a subsetting operation until an actual
batch of data is needed.

		to accumulate subsettings when different data access pattern
are used in combination with each other (which they usually are).
(i.e.: train/test splitting -> K-fold CV -> Minibatch-stream)

This design decision is particularly useful if the data is not
located in memory, but on the harddrive or some remote location.
In such a scenario one wants to load only the required data and
only when it is actually needed.

To allow DataSubset (and all the data splitting functions for that
matter) to work with any custom data-container-type, simply implement
the following methods:

		StatsBase.nobs(YourObject): return the total number of
observations your object represents.

		MLDataUtils.getobs(YourObject, idx): return the observation(s)
of the given index/indicies in idx. Tip: You should make use of
the fact that idx can be of type Range as well. As an example:
In the case of Array subtypes this results in the creation of
SubArrays instead of expensive data copies.

Training-/Testset Splits

Some separation strategies, such as dividing the dataset into a
training- and a testset, is often performed offline or predefined
by a third party. That said, it is useful to efficiently and
conveniently be able to split a given dataset into differently
sized subsets.

One such function that this package provides is called splitdata.
Note that this function does not shuffle the content, but instead
performs a static split at the relative position specified in at.

Load iris dataset for demonstration purposes
We will use X and y in a couple other examples below as well
X, y = load_iris()
@assert typeof(X) <: Matrix
@assert typeof(y) <: Vector

Splits the iris dataset into 70% training set and 30% test set
(train_X, train_y), (test_X, test_y) = splitdata(X, y; at = 0.7)

No data has been copied or allocated at this point
@assert typeof(train_X) <: DataSubset # same for the rest

You can use `get` to compute the actual data that the DataSubset
represents. This will trigger the actual subsetting of the
original data. Because splitdata performs a continuous split,
and also because in this case the original data is a Matrix,
`get` is able to represent the subset as a SubArray. This would
be different for random assignment.
@assert typeof(get(train_X)) <: SubArray

Splits only X into 70/30 portions
train_X, test_X = splitdata(X; at = 0.7)
@assert typeof(train_X) <: DataSubset # again

For the use-cases in which one wants to instead do a completely
random partitioning to create a training- and a testset, this
package provides a function called partitiondata. It has the same
signature as splitdata, but in contrast to splitdata is the
assignment of data-points to data-partitions random and thus
non-continuous. While providing more variation and likely improving
convergence, this approach will typically more resource intensive
than continuous splits produced my splitdata.

Partitions the iris dataset into 70% training set and 30% test set
(train_X, train_y), (test_X, test_y) = partitiondata(X, y; at = 0.7)

No data has been copied or allocated at this point
@assert typeof(train_X) <: DataSubset # same for the rest

In this case `get` will result in copy operation and memory allocation
@assert typeof(get(train_X)) <: Matrix

Also works for unsupervised use-cases
train_X, test_X = partitiondata(X; at = 0.7)
@assert typeof(train_X) <: DataSubset # again

KFolds for Cross-validation

Yet another use-case for data partitioning is model selection;
that is to determine what hyper-parameter values to use for a given
problem. A particularly popular method for that is
k-fold cross-validation, in which the dataset gets partitioned
into k folds.
Each model is fit k times, while each time a different fold is
left out during training, and is instead used as a validation set.
The performance of the k instances of the model is then averaged
over all folds and reported as the performance for the particular
set of hyper-parameters.

This package offers a general abstraction to perform K-fold
partitioning on data sets of arbitrary type. In other words, the
purpose of the type KFolds is to provide an abstraction to randomly
partition some dataset into k disjoint folds. The resulting
object can then be queried for it’s individual folds using getindex.

That said, KFolds is best utilized as an iterator. If used as such,
the dataset will be split into different training and test portions
in k different and unqiue ways, each time using a different fold
as the testset.

The following code snippets showcase how KFolds could be utilized:

Using KFolds in an unsupervised setting
for (train_X, test_X) in KFolds(X, 10)
 # The subsets are of a special type to delay evaluation
 # until it is really needed
 @assert typeof(train_X) <: DataSubset
 @assert typeof(test_X) <: DataSubset

 # One can use get to access the underlying data that a
 # DataSubset represents.
 @assert typeof(get(train_X)) <: Matrix
 @assert typeof(get(train_X)) <: Matrix
 @assert size(get(train_X)) == (4, 135)
 @assert size(get(test_X)) == (4, 15)
end

Using KFolds in a supervised setting
for ((train_X, train_y), (test_X, test_y)) in KFolds(X, y, 10)
 # Same as above
 @assert typeof(train_X) <: DataSubset
 @assert typeof(train_y) <: DataSubset

 # The real power is in combination with DataIterators.
 # Not only is the actual data-splitting delayed, it is
 # also the case that only as much storage is allocated as
 # is needed to hold the mini batches.
 # The actual code that is executed here can be specially
 # tailored to your custom datatype, thus giving 3rd party
 # ML packages full control over the pattern.
 for (batch_X, batch_y) in MiniBatches(train_X, train_y, size=10)
 # ... train supervised model here
 end
end

LOOFolds is a shortcut for setting k = nobs(X)
for (train_X, test_X) in LOOFolds(X)
 @assert size(get(test_X)) == (4, 1)
end

Note: The sizes of the folds may differ by up to 1 observation
depending on if the total number of observations is dividable by k.

As mentioned before, KFolds was designed to work with data sets of
arbitrary type, as long as they implement the basic set of methods
needed for DataSubset (see section above fore more details).

Data Iteration

Other partition-needs arise from the fact that the
interesting datasets are increasing in size as the scientific
community continues to improve the state-of-the-art. However,
bigger datasets also offer additional challenges in terms of
computing resources. Luckily, there are popular techniques in place
to deal with such constraints in a surprisingly effective manner.
For example, there are a lot of empirical results that demonstrate
the efficiency of optimization techniques that continuously update
on small subsets of the data.
As such, it has become a de facto standard to iterate over a given
dataset in minibatches, or even just one observation at a time.

This package offers two types for this kind of data iteration,
namely MiniBatches and RandomSamples.

MiniBatches

The purpose of MiniBatches is to provide a generic DataIterator
specification for labeled and unlabeled mini-batches that can be
used as an iterator, while also being able to be queried using
getindex. In contrast to RandomSampler, MiniBatches tries
to avoid copying data by grouping adjacent observations.

If used as an iterator, the object will iterate over the dataset
once, effectively denoting an epoch. Each iteration will return a
minibatch of constant size, which can be specified using keyword
parameters. In other words the purpose of MiniBatches is to
conveniently iterate over some dataset using equally-sized blocks,
where the order in which those blocks are returned can be
randomized by setting random_order = true.

The following code snippets showcase how MiniBatches could be
utilized:

batch_X contains 10 adjacent observations in each iteration.
Consequent batches are also adjacent, because the order of
batches is sequential. This is specified using random_order.
for batch_X in MiniBatches(X; size = 10, random_order = false)
 # ... train unsupervised model on batch here ...
end

This time the size is determined based on the total batch count,
as well as the dataset size. Observations in batch_x and batch_y
are still adjacent, however, consequent batches are generally not,
because the order in which they are processed is randomized.
for (batch_X, batch_y) in MiniBatches(X, y; count = 20, random_order = true)
 # ... train supervised model on batch here ...
end

		Note: In the case that the size of the dataset is not dividable
by the specified (or inferred) size, the remaining observations will
be ignored.

		Note: MiniBatches itself will not shuffle the data, thus the
observations within each batch/partition will in general be adjacent
to each other. However, one can choose to process the batches in
random order by setting random_order = true. The order will be
randomized each time the object is iterated over. Be aware that his
parameter will only take effect if the object is used as an iterator,
and thus won’t influence getindex.

Out-of-the-box it provides support efficient support for datasets
that are of type Matrix and/or Vector, as well as a general
fallback implementation for AbstractVectors and AbstractMatrix.

There are three ways to add support for custom
dataset-container-types.

		implement the getobs method for your custom type to return
the specified observations.

		implement the Base.getindex method for MiniBatches{YourType},
to define how a batch of a specified index is returned.

		implement the Base.next method for MiniBatches{YourType} to
have complete control over how your data container is iterated over.

RandomSamples

The purpose of RandomSamples is to provide a generic DataIterator
specification for labeled and unlabeled randomly sampled mini-batches
that can be used as an iterator, while also being able to be queried
using StatsBase.sample. In contrast to MiniBatches,
RandomSamples generates completely random mini-batches, in which
the containing observations are generally not adjacent to each other
in the original dataset.

The fact that the observations within each mini-batch are uniformly
sampled has important consequences:

		While this approach can often improve convergence, it is typically
also more resource intensive. The reason for that is because of the
need to allocate temporary data structures, as well as the need for
copy operations.

		Because observations are independently sampled, it is possible
that the same original obervation occurs multiple times within the
same mini-batch. This may or may not be an issue, depending on the
use-case. In the presence of online data-augmentation strategies,
this fact should usually not have any noticible impact.

The following code snippets showcase how RandomSamples could be
utilized:

batch_X contains 1 randomly sampled observation from X (i.i.d uniform).
Note: This code will in total produce as many batches as there are
observations in X. However, because the obervations are sampled
at random, one should expect to see some obervations multiple times,
while other not at all. If one wants to go through the original
dataset one observation at a time but in a random order, then
MiniBatches(X, size = 1, random_order = true) should be used instead.
Note: In the case X is a matrix or a vector then so will be batch_X, because
the additional dimension will not be dropped. This is for the sake
of both consistency and typestability
for batch_X in RandomSamples(X)
 # ... train unsupervised model on batch here ...
end

This time the size of each minibatch is specified explicitly to be 20,
while the number of batches is set to 100. Also note that a vector of
targets y is provided as well.
for (batch_X, batch_y) in RandomSamples(X, y; size = 20, count = 100)
 # ... train supervised model on batch here ...
end

One can also provide the total number of batches (i.e. count) directly.
This is mainly for intuition and convenience reasons.
for batch_X in RandomSamples(X, 10)
 # ... train unsupervised model on batch here ...
end

Out-of-the-box it provides support efficient support for datasets
that are of type Matrix and/or Vector, as well as a general
fallback implementation for AbstractVectors and AbstractMatrix.

There are three ways to add support for custom
dataset-container-types.

		implement the getobs method for your custom type to return the
specified observations.

		implement the StatsBase.sample method for
RandomSamples{YourType}, to define how a batch is generated.

		implement the Base.next method for RandomSamples{YourType} to
have complete control over how your data container is iterated over.

Feature Normalization

This package contains a simple model called FeatureNormalizer,
that can be used to normalize training and test data with the
parameters computed from the training data

x = collect(-5:.1:5)
X = [x x.^2 x.^3]'

Derives the model from the given data
cs = fit(FeatureNormalizer, X)

Normalizes the given data using the derived parameters
X_norm = predict(cs, X)

3x101 Array{Float64,2}:
 -1.70647 -1.67235 -1.63822 -1.60409 … 1.56996 1.60409 1.63822 1.67235 1.70647
 2.15985 2.03026 1.90328 1.77893 1.65719 1.77893 1.90328 2.03026 2.15985
 -2.55607 -2.40576 -2.26145 -2.12303 1.99038 2.12303 2.26145 2.40576 2.55607

The underlying functions can also be used directly

Centering

μ = center!(X[, μ])

Centers each row of X around the corresponding entry in the vector
μ. If μ is not specified then it defaults to mean(X, 2).

Rescaling

μ, σ = rescale!(X[, μ, σ])

Centers each row of X around the corresponding entry in the vector
μ and then rescaled using the corresponding entry in the vector σ.
If μ is not specified then it defaults to mean(X, 2).
If σ is not specified then it defaults to std(X, 2).

Basis Expansion

X = expand_poly(x; degree = 5)

Performs a polynomial basis expansion of the given degree for the
vector x. The return value X is a matrix of size
(degree, length(x)).

Note: all the features of X are centered and rescaled.

Data Generators

Noisy Function

x, y = noisy_function(fun, x; noise = 0.01, f_rand = randn)

Generates a noisy response y for the given function fun
by adding noise .* f_randn(length(x)) to the result of fun(x).

Noisy Sin

x, y = noisy_sin(n, start, stop; noise = 0.3, f_rand = randn)

Generates n noisy equally spaces samples of a sinus from start
to stop by adding noise .* f_randn(length(x)) to the result of
fun(x).

Noisy Polynome

x, y = noisy_poly(coef, x; noise = 0.01, f_rand = randn)

Generates a noisy response for a polynomial of degree length(coef)
using the vector x as input and adding noise .* f_randn(length(x)) to the result.
The vector coef contains the coefficients for the terms of the
polynome. The first element of coef denotes the coefficient for
the term with the highest degree, while the last element of coef
denotes the intercept.

Datasets

The package contains a few static datasets to serve as toy examples.

The Iris Dataset

X, y, vars = load_iris(n)

Loads the first n (of 150) observations from the Iris flower data
set introduced by Ronald Fisher (1936). The 4 by n matrix X
contains the numeric measurements, in which each individual column
denotes an observation. The vector y contains the class labels as
strings. The optional vector vars contains the names of the
features (i.e. rows of X)

Check out the wikipedia entry [https://en.wikipedia.org/wiki/Iris_flower_data_set]
for more information about the dataset.

Noisy Line Example

x, y, vars = load_line()

Loads an artificial example dataset for a noisy line. It is
particularly useful to explain under- and overfitting. The vector
x contains 11 equally spaced points between 0 and 1. The vector
y contains x ./ 2 + 1 plus some gaussian noise. The optional
vector vars contains descriptive names for x and y.

[image: noisy_line]

Noisy Sin Example

x, y, vars = load_sin()

Loads an artificial example dataset for a noisy sin. It is
particularly useful to explain under- and overfitting. The vector
x contains equally spaced points between 0 and 2π. The vector y
contains sin(x) plus some gaussian noise. The optional vector
vars contains descriptive names for x and y.

[image: noisy_sin]

Noisy Polynome Example

x, y, vars = load_poly()

Loads an artificial example dataset for a noisy quadratic function.
It is particularly useful to explain under- and overfitting. The
vector x contains 50 points between 0 and 4. The vector y
contains 2.6 * x^2 + .8 * x plus some gaussian noise. The
optional vector vars contains descriptive names for x and y.

[image: noisy_poly]

References

		Fisher, Ronald A. “The use of multiple measurements in taxonomic problems.” Annals of eugenics 7.2 (1936): 179-188.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

