MLDataUtils.jl’s documentation

This package is designed to be the end-user facing front-end to all the data related functionality that is spread out across the JuliaML ecosystem. Most of the following sub-categories are covered by a single back-end package that is specialized on that specific problem. Consequently, if one of the following topics is of special interest to you, make sure to check out the corresponding documentation of that package.

Where to begin?

If this is the first time you consider using MLDataUtils for your machine learning related experiments or packages, make sure to check out the “Getting Started” section; specifically “How to …?”, which lists some of most common scenarios and links to the appropriate places that should guide you on how to approach these scenarios using the functionality provided by this or other packages.

Using MLDataUtils.jl

While the sole focus of the whole package is on data-related functionality, we can further divide the provided types and functions into a number of quite heterogeneous sub-categories.

Label Encodings

In a classification setting, one usually treats the desired output variable (also called ground truths, or targets) as a discrete categorical variable. That is true even if the values themself are of numerical type, which they often are for practical reasons. This package provides various tools needed to deal with classification targets of arbitrary format. This includes asserting if the targets are of a desired encoding, inferring the concrete encoding the targets are in and how many classes they represent, and converting from their native encoding to the desired one.

Provided by JuliaML/MLLabelUtils.jl. See the [full documentation] for more information.

Data Access Pattern

Typical Machine Learning experiments require a lot of rather mundane but error prone data handling glue code. One particularly interesting category of data handling functionality are what we call data access pattern. These “pattern” include subsetting, resampling, iteration, and partitioning of various types of data sets. The functionality was designed around the key requirement of allowing any user-defined type to serve as a custom data source and/or access pattern in a first class manner. That said, there was also a lot of attention focused on first class support for those types that are most commonly employed to represent the data of interest, such as DataFrame and Array.

Provided by JuliaML/MLDataPattern.jl. See the [full documentation] for more information.

Data Processing

This package contains a number of simple pre-processing strategies that are often applied for ML purposes, such as feature centering and rescaling.

Data Generators

When studying learning algorithm or other ML related functionality, it is usually of high interest to empirically test the behaviour of the system under specific conditions. Generators can provide the means to fabricate artificial data sets that observe certain attributes, which can help to deepen the understanding of the system under investigation.

Example Datasets

We provide a small number of toy datasets. These are mainly intended for didactic and testing purposes.

Indices and tables